4D Modeling of CME Expansion and EUV Dimming Observed with STEREO/EUVI

نویسنده

  • Markus J. Aschwanden
چکیده

This is the first attempt to model the kinematics of a CME launch and the resulting EUV dimming quantitatively with a self-consistent model. Our 4D-model assumes selfsimilar expansion of a spherical CME geometry that consists of a CME front with density compression and a cavity with density rarefaction, satisfying mass conservation of the total CME and swept-up corona. The model contains 14 free parameters and is fitted to the 2008 March 25 CME event observed with STEREO/A and B. Our model is able to reproduce the observed CME expansion and related EUV dimming during the initial phase from 18:30 UT to 19:00 UT. The CME kinematics can be characterized by a constant acceleration (i.e., a constant magnetic driving force). While the observations of EUVI/A are consistent with a spherical bubble geometry, we detect significant asymmetries and density inhomogeneities with EUVI/B. This new forward-modeling method demonstrates how the observed EUV dimming can be used to model physical parameters of the CME source region, the CME geometry, and CME kinematics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soho Eit Observations of Extreme-ultraviolet “dimming” Associated with a Halo Coronal Mass Ejection

A solar flare was observed on 1997 April 7 with the Soft X-ray Telescope (SXT) on Yohkoh. The flare was associated with a “halo” coronal mass ejection (CME). The flaring region showed areas of reduced soft X-ray (SXR) brightness—“dimmings”—that developed prior to the CME observed in white light and persisted for several hours following the CME. The most prominent dimming regions were located ne...

متن کامل

High cadence observations of a global coronal wave by EUVI/STEREO

We report a large-scale coronal wave (so-called “EIT wave”) observed with high cadence by EUVI onboard STEREO in association with the GOES B9.5 flare and double CME event on 19 May 2007. The EUVI instruments provide us with the unprecedented opportunity to study the dynamics of flare/CME associated coronal waves. The coronal wave under study reveals deceleration, indicative of a freely propagat...

متن کامل

On Flare-CME Characteristics from Sun to Earth Combining Remote-Sensing Image Data with In Situ Measurements Supported by Modeling

We analyze the well-observed flare and coronal mass ejection (CME) from 1 October 2011 (SOL2011-10-01T09:18) covering the complete chain of effects - from Sun to Earth - to better understand the dynamic evolution of the CME and its embedded magnetic field. We study in detail the solar surface and atmosphere associated with the flare and CME using the Solar Dynamics Observatory (SDO) and ground-...

متن کامل

In situ heating of the 2007 May 19 CME ejecta detected by stereo/plastic and ACE

In situ measurements of ion charge states can provide unique insight into the heating and evolution of coronal mass ejections (CMEs) when tested against realistic non-equilibrium ionization modeling. In this work, we investigate the representation of the CME magnetic field as an expanding spheromak configuration, where the plasma heating is prescribed by the choice of anomalous resistivity and ...

متن کامل

Relation Between the 3 D - Geometry of the Coronal Wave and Associated CME During the 26 April 2008 Event

We study the kinematical characteristics and 3D geometry of a large-scale coronal wave that occurred in association with the 26 April 2008 flare-CME event. The wave was observed with the EUVI instruments aboard both STEREO spacecraft (STEREO-A and STEREO-B) with a mean speed of ∼ 240 km s−1. The wave is more pronounced in the eastern propagation direction, and is thus, better observable in STER...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009